氮化硅陶瓷的增韧方法
氮化硅陶瓷的增韧方法
不同于金属材料,陶瓷材料具有特殊的晶体结构,因而不存在晶界滑移、位错等吸收能量的机制,是制约陶瓷应用的主要因素之一。目前,应用于氮化硅陶瓷的增韧方法主要有颗粒弥散增韧、晶须或纤维增韧、相变增韧和自增韧等。
1、颗粒弥散增韧
颗粒弥散增韧原理是通过引入与基体热膨胀系数(CTE)不同的材料来诱导残余应力,对裂纹产生钉扎作用,促使裂纹发生偏转,从而提高材料的断裂韧性,如SiC、TiC、TiN和铁硅化物等。
2、晶须或纤维增韧
晶须或纤维增韧是指在氮化硅中加入高强度、高弹性模量的晶须或纤维材料。氮化硅陶瓷在发生破坏的过程中,晶须或纤维会吸收裂纹拓展时的剩余能量,发生脱粘、拔出和断裂,导致裂纹扩展路径发生变化并消耗了断裂能。目前,常用的增韧晶须(纤维)主要为SiC、BN和TiB等。
3、相变增韧
1975年,Garvie等首次发现了氧化锆陶瓷能通过相变获得增韧效果,从而能改善陶瓷脆性这一致命弱点。ZrO2陶瓷在应力诱导下从亚稳态的四方相(t-ZrO2)相变为单斜相(m-ZrO2),相变过程伴随体积膨胀,吸收和消耗了裂纹尖端能量并产生压应力作用于裂纹区,有效阻碍了裂纹的拓展,材料的强度和断裂韧性得到大幅度提升。
4、自增韧
自增韧是近几年发展起来的能够有效提高陶瓷断裂韧性的一种新工艺,主要是通过对工艺的控制使陶瓷晶粒在原位形成有较大长径比的形貌,从而起到类似于晶须的补强增韧作用。主要是通过对成分和工艺的优化来获得一定尺寸和长径比的β- Si3N4晶棒,从而使材料的强度和韧性得到提高。
5、添加合适的烧结助剂
Si3N4陶瓷在高温烧结会从α相转化为β相,双峰结构β- Si3N4晶粒会在裂纹拓展时产生裂纹桥接作用,消耗断裂能,从而提高断裂韧性。研究者利用Si3N4这一特点,通过添加合适的烧结助剂并调节烧结工艺来促进相变和晶粒长大或引入β- Si3N4晶种。